Umwelt 🌍 Bundesamt

CERTIFICATE

of Product Conformity (QAL1)

Certificate No.: 0000028733_02

AMS designation:	SWAM 5a Dual Channel Monitor, SWAM 5a Dual Channel Hourly Mode Monitor for PM_{10} and $PM_{2.5}$ and SWAM 5a Monitor for PM_{10} or $PM_{2.5}$
Manufacturer:	FAI Instruments s.r.l. Via Aurora, 25 00013 Fonte Nuova (Roma) Italy
Test Laboratory:	TÜV Rheinland Energy GmbH
E	is to certify that the AMS has been tested and certified according to the standards VDI 4202-1 (2002), VDI 4203-3 (2004), N 12341 (1998), EN 14907 (2005), EN 16450 (2017), Instration of equivalence of ambient air monitoring methods (2010), EN 15267-1 (2009) and DIN EN 15267-2 (2009).

Certification is awarded in respect of the conditions stated in this certificate (this certificate contains 17 pages). The present certificate replaces certificate 0000028733 01 of 22 July 2016.

Suitability Tested Complying with 2008/50/EC EN 15267 Regular Surveillance

www.tuv.com ID 0000028733

Publication in the German Federal Gazette (BAnz) of 25 August 2009

German Federal Environment Agency Dessay, 13 April 2018

Dr. Marcel Langner Head of Section II 4.1

www.umwelt-tuv.eu tre@umwelt-tuv.eu Phone: + 49 221 806-5200 This certificate will expire on: 28 July 2021

TÜV Rheinland Energy GmbH Cologne, 12 April 2018

Pu Put Win

ppa. Dr. Peter Wilbring

TÜV Rheinland Energy GmbH Am Grauen Stein 51105 Köln

Test institute accredited to EN ISO/IEC 17025:2005 by DAkkS (German Accreditation Body). This accreditation is limited to the accreditation scope defined in the enclosure to the certificate D-PL-11120-02-00.

gal1.de

Page 1 of 17

Test Report: Initial certification: Expiry date: Publication:

29 July 2011 28 July 2021 BAnz. 25 August 2009, no. 125, page 2929, chapter II no. 2.1

936/21207522/A dated 23 March 2009

Approved application

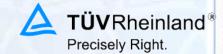
The certified AMS is suitable for continuous ambient air monitoring of suspended particulate matter, PM_{10} and $PM_{2.5}$ (stationary operation).

The suitability of the AMS for this application was assessed on the basis of a laboratory test and field tests at up to six different locations and/or periods.

The AMS is approved for an ambient temperature range of +5 °C to +40 °C.

The notification of suitability of the AMS, performance testing and the uncertainty calculation have been effected on the basis of the regulations applicable at the time of testing. As changes in legal provisions are possible, any potential user should ensure, in consultation with the manufacturer, that this AMS is suitable for monitoring the limit values relevant to the application.

Any potential user should ensure, in consultation with the manufacturer, that this AMS is suitable for the planned operation purpose.


Basis of the certification

This certification is based on:

- Test report 936/21207522/A dated 23 March 2009 issued by TÜV Rheinland Immissionsschutz und Energiesysteme GmbH and addendum 936/21239762/A dated 22 September 2017 issued by TÜV Rheinland Energy GmbH
- Suitability announced by the German Federal Environment Agency (UBA) as the relevant body
- The ongoing surveillance of the product and the manufacturing process

Umwelt 🎧 Bundesamt

Certificate: 0000028733_02 / 13 April 2018

Publication in the German Federal Gazette: BAnz. 25 August 2009, no. 125, page 2929, chapter II no. 2.1, UBA announcement of 03 August 2009:

AMS designation:

SWAM 5a Dual Channel Monitor for PM₁₀ and PM_{2.5}

Manufacturer:

FAI Instruments s.r.l., Fonte Nuova (Rom), Italy

Field of application:

For the continuous and simultaneous ambient air monitors of the PM₁₀ and PM_{2.5} fractions of suspended particulate matter (stationary operation)

Measuring ranges during performance testing:

PM₁₀: 0–200 μg/m³ PM_{2.5}: 0–200 μg/m³

Software version: Version Rel 04-08.01.65-30.02.00


Notes:

- 1. Requirements specified in Guideline "Demonstration of Equivalence of Ambient Air Monitoring Methods" are complied with.
- 2. Filter housings with a spot area of 5.20 cm² were used.
- 3. The measuring system must be calibrated on site at regular intervals by using the gravimetric PM₁₀ reference method according to EN 12341.
- 4. The measuring system must be calibrated on site at regular intervals by using the gravimetric $PM_{2.5}$ reference method according to EN 14907.

Test Report:

TÜV Rheinland Immissionsschutz und Energiesysteme GmbH, Cologne Report no. 936/21207522/A dated 23 March 2009

Publication in the German Federal Gazette: BAnz 29 July 2011, no. 113, page 2725, chapter III notification 7, UBA announcement dated 15 July 2011:

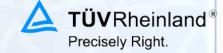
7 Notification as regards Federal Environment Agency notice of 3 August 2009 (BAnz. p. 2929, chapter II no. 2.1)

The SWAM 5a Dual Channel Monitor for PM_{10} and $PM_{2.5}$ manufactured by FAI Instruments s. r. l. complies with the requirements of EN 12341, EN 14907 and the Guideline "Demonstration of Equivalence of Ambient Air Monitoring Methods" in its November 2005 version. Furthermore, the manufacturing process and the quality management for the SWAM 5a Dual Channel Monitor for PM_{10} and $PM_{2.5}$ meets the requirements of EN 15267.

The test report on performance testing is available on the internet at www.qal1.de.

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 26 March 2011

Publication in the German Federal Gazette: BAnz. 2 March 2012, no. 36, p. 920, chapter V notification 2, UBA announcement dated 23 February 2012:


2 Notification as regards Federal Environment Agency notice of 3 August 2009 (BAnz. p. 2929, chapter II no. 2.1) and of 15 July 2011 (BAnz. page 2725, chapter III 7th notification)

The SWAM 5a Dual Channel Monitor ambient air measuring system for PM_{10} and $PM_{2.5}$ manufactured by FAI Instruments s.r.l can also be used in its 1-hour measurement mode version. This instrument version with 1-hour measurement mode is distributed as SWAM 5a Dual Channel Hourly Mode Monitor.

The SWAM 5a Dual Channel Hourly Mode Monitor ambient air measuring system manufactured by FAI Instruments s.r.l is distributed by Teledyne Advanced Pollution Instrumentation under the name of Model 602 BetaPlus which is identical in design.

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 11 October 2011

Publication in the German Federal Gazette: BAnz. 2 March 2012, no. 36, p. 920, chapter V notification 3, UBA announcement dated 23 February 2012:

 Notification as regards Federal Environment Agency (UBA) notices of 3 August 2009 (BAnz. p. 2929, chapter II no. 2.1) and of 15 July 2011 (BAnz. p. 2725, chapter III 7th notification)

The announcement for the SWAM 5a Dual Channel Monitor ambient air measuring system for PM_{10} and $PM_{2.5}$ manufactured by FAI Instruments s.r.l also covers the single-channel design of the ambient air monitor which is called SWAM 5a Monitor.

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 3 November 2011

Publication in the German Federal Gazette: BAnz AT 05.03.2013 B10, chapter V notification 12, UBA announcement dated 12 February 2013:

12 Notification as regards Federal Environment Agency (UBA) notices of 3 August 2009 (BAnz. p. 2929, chapter II no. 2.1) and of 23 February 2012 (BAnz. p. 920, chapter V 2nd and 3rd notification)

The current software version of the SWAM 5a Dual Channel Monitor dust measuring system for PM_{10} and $PM_{2.5}$ manufactured by FAI Instruments s.r.l is: 04-09.01.85-30.02.00

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 15 October 2012

Publication in the German Federal Gazette: BAnz AT 02.04.2015 B5, chapter IV notification 8, UBA announcement dated 25 February 2015:

8 Notification as regards Federal Environment Agency (UBA) notices of 3 August 2009 (BAnz. p. 2929, chapter II no. 2.1) and of 12 February 2013 (BAnz AT 05.03.2013 B10 chapter V 12th notification)

The current software versions of the SWAM 5a Dual Channel Monitor for PM_{10} and $PM_{2.5}$ are:

04-09.01.85-30.02.00 (old micro controller, up to 2008) and

04-09.01.85-30.03.00 (new micro controller, as of 2008)

An optional Ethernet board is available for the SWAM 5a Dual Channel Hourly Mode Monitor for PM_{10} and $PM_{2.5}$ which enables the measuring system to communicate via a LAN. The current software version of the measuring system is: 05-02.08.56-30.03.00

The current software version of the SWAM 5a Monitor for PM_{10} or $PM_{2.5}$ is: 01-05.05.13-30.03.00

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 19 September 2014

Publication in the German Federal Gazette: BAnz AT 26.08.2015 B4, chapter V notification 44, UBA announcement dated 22 July 2015:

44 Notification as regards Federal Environment Agency (UBA) notices of 3 August 2009 (BAnz. p. 2934, chapter II no. 2.1) and of 25 February 2015 (BAnz AT 02.04.2015 B5 chapter IV 8th notification)

Standard sampling inlets PM10-EN12341-2014 and PM2.5-EN12341-2014 in accordance with annex A to standard EN 12314:2014 (August 2014 version) are available for the SWAM 5a Dual Channel Monitor for PM_{10} and $PM_{2.5}$, SWAM 5a Dual Channel Hourly Mode Monitor for PM_{10} and $PM_{2.5}$ and SWAM 5a Monitor for PM_{10} or $PM_{2.5}$ manufactured by FAI Instruments srl.

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 17 March 2015

Publication in the German Federal Gazette: BAnz AT 26.03.2018 B8, chapter V notification 6, UBA announcement dated 21 February 2018:

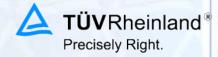
6 Notification as regards Federal Environment Agency (UBA) notices of 3 August 2009 (BAnz. p. 2934, chapter II no. 2.1) and of 22 July 2015 (BAnz AT 26.08.2015 B4 chapter V 44th notification)

The SWAM 5a Dual Channel Monitor, SWAM 5a Dual Channel Hourly Mode Monitor for PM_{10} and $PM_{2.5}$ and the SWAM 5a Monitor for PM_{10} or $PM_{2.5}$ manufactured by FAI Instruments srl. meet the requirements of standard EN 16450 (July 2017 version). An addendum no. 936/21239762/A as integral part of test report is available online at <u>www.qal1.de</u>.

The current software version of the SWAM 5a Dual Channel Monitor for PM_{10} and $PM_{2.5}$ is:

04-09.01.92-30.03.00

The current software version of the SWAM 5a Dual Channel Hourly Mode Monitor for PM_{10} and $PM_{2.5}$ is:


05-03.00.01-30.03.00

The current software version of the SWAM 5a Monitor for PM₁₀ or PM_{2.5} is:

01-05.05.17-30.03.00

Statement issued by TÜV Rheinland Energy GmbH dated 22 September 2017

Certified product

This certification applies to automated measurement systems conforming to the following description:

For mass measurement of separated particles, the SWAM 5a Dual Channel Monitor, SWAM 5a Dual Channel Hourly Mode Monitor and SWAM 5a Monitor measuring systems rely on the principle of beta attenuation observed on passing through a thin film of material.

The measuring system is available in three different instrument versions: SWAM 5a Dual Channel Monitor (PM_{10} and $PM_{2.5}$, two independent sampling lines, 24h measurement mode tested); SWAM 5a Dual Channel Hourly Monitor (PM_{10} and $PM_{2.5}$, via two independent sampling lines, 1h measurement cycle tested) and SWAM 5a Monitor (PM_{10} or $PM_{2.5}$ via a single sampling line, 24h measurement cycle tested).

The SWAM 5a Dual Channel Monitor, SWAM 5a Monitor and SWAM 5a Dual Channel Hourly Mode Monitor are automated and sequential measuring systems for the determination of particles on filter membranes. The dual channel versions use pumps to suck in ambient air via the PM_{10} sampling head on the one hand and the $PM_{2.5}$ sampling head on the other. Dust-loaded sample air is then precipitated on a filter (1 x PM_{10} , 1 x $PM_{2.5}$). The SWAM 5a Monitor version of the instrument samples air on the filter via the sampling inlet with the help of a single pump.

The determination of the mass concentration precipitated on a filter is then performed relying on the radiometric principle of beta absorption. A single radiometric mass measurement module is used to determine the dust mass deposited on the filters for the dual-channel instrument versions, too.

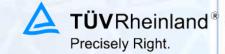
The SWAM 5a Dual Channel Monitor and SWAM 5a Dual Channel Hourly Mode Monitor measuring system consists of two sampling heads (PM_{10} and $PM_{2.5}$), two intake pipes, two vacuum pumps, the instrument, the compressor for generating compressed air and the two filter cartridges for virgin and sampled filters.

The SWAM 5a Monitor consists of a sampling head (PM_{10} or $PM_{2.5}$), an intake pipe, a vacuum pump, the instrument, the compressor for generating compressed air and the two filter cartridges for virgin and sampled filters.

The sampling inlets are manufactured by the instrument manufacturer and are available for various flow rates (2.3 m³/h or 1 m³/h). During performance testing, sampling inlets with a throughput of 2.3 m³/h were used which, in terms of design, complied with the standards applicable at the time of testing, namely EN 12341:1998 (PM₁₀) and EN 14907:2005 (PM_{2.5}). Approval extends to those sampling inlets which, in terms of their design, comply with the requirements of EN 12341:2014 (PM₁₀, PM_{2.5}).

Ambient air containing particles is taken in through the sampling inlet, it passes through the intake pipe and finally reaches the filter.

In situations with high amounts of volatile dust components it is possible to have the intake pipe purged co-axially with ambient air (it may alternatively heated or cooled).


As part of the test at hand, neither purging with ambient air, nor active heating or cooling of the intake pipes took place. Inside the measuring rack, the intake pipes were isolated by wrapping foamed material around it.

Ambient air is taken in through the sampling inlets, the intake pipes and the filters with the help of the vacuum pump. They consist of a piston pump with an upstream silencer filter to balance out pressure fluctuations.

In principle, it is possible to use a different pump type (e.g. graphite rotary vane pump) as long as the required pump performance is ensured at any given time.

The sampling unit contains all the servo mechanics, the pneumatic and beta measurement component as well as all electronic parts and microprocessors for operation, control and monitoring of the measuring system. The control panel with display is located at the front of

the system; pneumatic and electronic connections as well as communication interfaces are located at the back of the system. Filter loader/unloader housings and intake pipes are located on the upper instrument surface.

The instrument is equipped with a service air compressor able to supply compressed air (200–300 kPa) used for the servomechanisms movements (e.g. for loading/unloading filters into the relevant housing). A compressor generates the necessary compressed air.

The measuring system is operated via a membrane keypad combined with a display at the front of the instrument. This is where all necessary parameters can be adjusted (e.g. sampling time). Moreover, information regarding the current instrument status (on-going sampling), data saved on completed measurements and numerous parameters for quality assurance can be accessed here.

In addition to direct communication via the control panel/display, the system can be fully operated, controlled and parameterised via the RS-232 serial interface and a standard terminal programme (e.g. Hyperterminal) or the software components Dr. FAI Manager, either directly or indirectly via a GSM modem

The current software versions are:

SWAM 5a Dual Channel Monitor: SWAM 5a Dual Channel Hourly Mode Monitor: SWAM 5a Monitor:

The current manual versions are:


SWAM 5a Dual Channel Monitor:

SWAM 5a Dual Channel Hourly Mode Monitor: SWAM 5a Monitor:

04-09.01.92-30.03.00 05-03.00.01-30.03.00 01-05.05.17-30.03.00

02/2009 - rev. 22 05/2016 - rev. 01 05/2016 - rev. 13

General remarks

This certificate is based upon the equipment tested. The manufacturer is responsible for ensuring that on-going production complies with the requirements of the EN 15267. The manufacturer is required to maintain an approved quality management system controlling the manufacturing process for the certified product. Both the product and the quality management systems shall be subject to regular surveillance.

If a product of the current production does not conform to the certified product, TÜV Rheinland Energy GmbH must be notified at the address given on page 1.

A certification mark with an ID-Number that is specific to the certified product is presented on page 1 of this certificate.

This document as well as the certification mark remains property of TÜV Rheinland Energy GmbH. Upon revocation of the publication the certificate loses its validity. After the expiration of the certificate and on request of TÜV Rheinland Energy GmbH this document shall be returned and the certificate mark must no longer be used.

The relevant version of this certificate and its expiration date are also accessible on the internet at **<u>gal1.de</u>**.

Certification of measuring systems SWAM 5a Dual Channel Monitor, SWAM 5a Dual Channel Hourly Mode Monitor for PM_{10} and $PM_{2.5}$ and SWAM 5a Monitor for PM_{10} or $PM_{2.5}$ is based on the documents listed below and the regular, continuous surveillance of the manufacturer's quality management system:

Basic testing:

Test report: 936/21207522/A dated 23 March 2009 TÜV Rheinland Immissionsschutz und Energiesysteme GmbH, Cologne Publication: BAnz. 25 August 2009, no. 125, p. 2929, chapter II number 2.1 UBA announcement dated 3 August 2009

Initial certification according to EN 15267

Certificate no. 0000028733:	19 August 2011
Expiry date of the certificate:	28 July 2016

Test report: 936/21207522/A dated 23 March 2009 TÜV Rheinland Immissionsschutz und Energiesysteme GmbH, Cologne Publication: BAnz. 29 July 2011, no. 113, p. 2725, chapter III notification 7 UBA announcement dated 15 July 2011

Notifications in accordance with EN 15267

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 11 October 2011 Publication: BAnz. 2 March 2012, no. 36, p. 920, chapter V notification 2, UBA announcement dated 23 February 2012 (new instrument version)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 3 November 2011 Publication: BAnz. 02 March 2012, no. 36, p. 920, chapter V notification 3, UBA announcement dated 23 February 2012 (new instrument version)

Opinion stated by TÜV Rheinland Energie und Umwelt GmbH dated 15 October 2012 Publication: BAnz AT 05.03.2013 B10, chapter V notification 12 UBA announcement dated 12 February 2013 (New software version)

Opinion stated by TÜV Rheinland Energie und Umwelt GmbH dated 19 September 2014 Publication: BAnz AT 02.04.2015 B5, chapter IV notification 8 UBA announcement dated 25 February 2015 (New software version)

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 17 March 2015. Publication: BAnz AT 26.08.2015 B4, chapter V notification 44 UBA announcement dated 22 July 2015 (hardware changes)

Renewal of the certificate

Certificate no. 0000028733_01: 22 July 2016 Expiry date of the certificate: 28 July 2021

Notifications in accordance with EN 15267

Certificate no. 0000028733_02: 13 April 2018 Expiry date of the certificate: 28 July 2021

Statement issued by TÜV Rheinland Energy GmbH dated 22 September 2017 Publication: BAnz AT 26.03.2018 B8, chapter V notification 6 UBA announcement dated 21 February 2018 (compliance with standard EN 16450 (2017), new software version)

Summary of the results for equivalence testing SWAM 5a Dual Channel Monitor, measured component $PM_{2.5}$ after correction of the slope and intercept

C	Comparison of Equival	andidate with refere		waw 2010	
Candidate	SWAM 5a DC	lence of Amblenic Af		27/145/248 & 131/149/249	
			Limit value	30	µg/m³
Status of measured values	Slope & offset corrected		Allowed uncertainty	25	%
		All comparisons			
Uncertainty between Reference	0.51	µg/m³			
Uncertainty between Candidates	0.73	µg/m³		and a second	
	SN 127/145/248 & 131/149/2	49			
Number of data pairs	312				
Slope b	1.001	not significant			
Uncertainty of b	0.011				
Ordinate intercept a	-0.007	not significant			
Uncertainty of a	0.189				
Expanded meas. uncertainty W_{CM}	12.16	%			
	А	II comparisons, ≥18	µg/m³		
Uncertainty between Reference	0.64	µg/m³			
Uncertainty between Candidates	0.79	µg/m³			
	SN 127/145/248 & 131/149/2	49			
Number of data pairs	91				
Slope b	1.051				
Uncertainty of b	0.029				
Ordinate intercept a	-2.028				
Uncertainty of a	0.804				
Expanded meas. uncertainty W _{CM}	15.45	%			
	Α	II comparisons, <18	µg/m³		
Uncertainty between Reference	0.50	µg/m³			
Uncertainty between Candidates	0.45	µg/m³		and the second second	- Hore
	SN 127/145/248 & 131/149/2	49			
Number of data pairs	221				
Slope b	0.959				
Uncertainty of b	0.022				
Ordinate intercept a	0.606				
Uncertainty of a	0.237			-	
Expanded meas. uncertainty W _{CM}	10.78	%			

Umwelt 🎧 Bundesamt

Certificate:

0000028733_02 / 13 April 2018

Candidate	de "Demonstration of Equiva SWAM 5a DC			127/145/248 & 131/149/	249
Status of measured values	Slope & offset corrected		Limit value Allowed uncertainty	30 25	µg/m³ %
and the between Defenses		Cologne, parking lot (2	007)		
ncertainty between Reference ncertainty between Candidates	0.67 0.71	µg/m³			
umber of data pairs	SN 127 45		_	SN 131 46	_
lope b	1.029			0.995	
noertainty of b	0.023			0.023	
rdinate intercept a ncertainty of a	-0.653 0.393			-0.372 0.391	
kpanded meas. uncertainty W _{CM}	7.23	%		7.90	%
		Bonn, Belderberg			
oertainty between Reference	0.46	µg/m³			
ncertainty between Candidates	0.44 SN 127	µg/m³	_	SN 131	_
umber of data pairs	41			41	
ope b	1.025			1.052 0.022	
ncertainty of b rdinate intercept a	-1.611			-2.437	
ncertainty of a	0.456			0.504	~
(panded meas.uncertainty Wcм	9.94	96		10.68	%
		Bruehl			
noertainty between Reference noertainty between Candidates	0.65	µg/m³			
iournality between calibidates	0.65 SN 127	µg/m³		SN 131	
umber of data pairs	43			45	
ope b noertainty of b	1.013 0.033			1.032 0.033	
rdinate intercept a	-1.357			-1.595	
ncertainty of a xpanded meas.uncertaintyW _{CM}	0.509	%		0.534	96
xpanded meas , undertainty wich	10.83			10.51	70
		Teddington			
ncertainty between Reference ncertainty between Candidates	0.33 0.45	µg/m³			
benancy between oundoarts	SN 145	pg/m		SN 149	
umber of data pairs	74			80	
ope b noertainty of b	1.005 0.023			1.002	
rdinate intercept a	0.801			1.020	
noertainty of a	0.290			0.252	
xpanded meas.uncertainty Wow	11.94	% Cologne, parking lot (2	011)	11.62	%
ncertainty between Reference	0.52	hð/w2		- X.	
noertainty between Candidates	1.37 SN 127	µg/m³		SN 131	
umber of data pairs	67			53	
lope b	1.053			1.000	
ncertainty of b Indinate intercept a	0.027			0.032	
ncertainty of a	0.634			0.824	
xpanded meas.uncertainty W _{CM}	17.18	%		19.17	%
ncertainty between Reference	0.65	Bornheim µg/m³			
ncertainty between Candidates	0.33	µg/m ³			
umber of data pairs	SN 248 57			SN 249 60	
lope b	1.084			1.094	
noertainty of b	0.041			0.043	
rdinate intercept a ncertainty of a	-0.213 0.441			-0.338 0.456	
kpanded meas. uncertainty Wow	18.54	%		19.85	%
		All comparisons, ≥18 µ	j/m³		
ncertainty between Reference	0.64	µg/m ³	-		
ncertainty between Candidates	0.79	µg/m³		011 101111010 10	
umber of data pairs	SN 127/145/248 95			SN 131/149/249 95	
lope b	1.067			1.023	
ncertainty of b	0.029			0.029	
rdinate intercept a ncertainty of a	-2.358 0.810			-1.408 0.81	
xpanded meas. uncertainty W _{CM}	15.74	%		16.12	%
		All comparisons, <18 µ	g/m³		
ncertainty between Reference	0.50	µg/m³			
ncertainty between Candidates	0.45	µg/m³		011 404 14 1010 15	
umber of data pairs	SN 127/145/248 232			SN 131/149/249 230	
lope b	0.958			0.985	
ncertainty of b rdinate intercept a	0.021 0.593	MARSIN		0.024 0.413	
ncertainty of a	0.226			0.413	
xpanded meas.uncertainty Wow	10.49	%		10.93	%
		All comparisons			
noertainty between Reference	0.51	µg/m³		and the second	
ncertainty between Candidates	0.73	µg/m³			
umber of data pairs	SN 127/145/248 327			SN 131/149/249 325	
lope b	1.009	not significant		0.991	not significan
ncertainty of b Indinate intercept a	0.011 -0.118	not significant		0.011 0.137	not significan
	-0.118	not significant		0.137	nor significan
Incertainty of a	0.167			0.100	

Umwelt 🎲 Bundesamt

Certificate: 0000028733_02 / 13 April 2018

Summary of the results for equivalence testing SWAM 5a Dual Channel Monitor, Measured component PM₁₀ after correction of the slope

	" January 2010		andidate with refere	Comparisor Demonstration of Equiv	Guide
	SN 127/145/248 & 131/149/249	SN	Allence of Amblent All	SWAM 5a DC	Candidate
μg/m³	50	Limit value			
%	25	Allowed uncertainty		Slope corrected	Status of measured values
		, and the and officially			
			All comparisons		
		100 C	µg/m³	0.75	Incertainty between Reference
			µg/m ^s	0.63	Incertainty between Candidates
			9/249	SN 127/145/248 & 131/149	
				404	lumber of data pairs
			not significant	0.999	ilope b
			·····j·····	0.009	Incertainty of b
			not significant	-0.240	Ordinate intercept a
			not significant	0.228	Incertainty of a
			%	8.85	xpanded meas. uncertainty W _{CM}
		ıq/m³	All comparisons, ≥30 µ	0.00	spanaed meder anoentainty mem
		.g			
			µg/m³	0.78	ncertainty between Reference
			µg/m³	1.14	Incertainty between Candidates
			9/249	SN 127/145/248 & 131/149	
				83	lumber of data pairs
				1.111	lope b
				0.030	Incertainty of b
				-5.296	Ordinate intercept a
				1.307	Incertainty of a
		1000	%	13.36	xpanded meas. uncertainty W _{CM}
		µg/m³	All comparisons, <30 µ		
			µg/m³	0.74	Incertainty between Reference
1.464			µg/m ^s	0.43	Incertainty between Candidates
				SN 127/145/248 & 131/149	
			and the second	321	lumber of data pairs
				0.962	lope b
				0.015	Incertainty of b
				0.527	Ordinate intercept a
				0.276	
			0/_		
			%		Indinate intercept a Incertainty of a Expanded meas. uncertainty W _{CM}

Umwelt 🎧 Bundesamt

Certificate: 0000028733_02 / 13 April 2018

Guid	e "Demonstration of Equiv	candidate with refere alence Of Ambient Air	Monitoring Methods",	January 2010	
Candidate	SWAM 5a DC		SN SI Limit value	N 127/145/248 & 131/149 50	/249 µg/m³
Status of measured values	Slope corrected		Allowed uncertainty	25	%
		Cologne, parking lot (2007)		
Uncertainty between Reference	1.12	µg/m ³	2007)		
Uncertainty between Candidates	0.83	µg/m³			and the second second
Number of data pairs	SN 127 98			SN 131 100	_
Slope b	1.070			1.021	
Uncertainty of b	0.012			0.011	
Ordinate intercept a Uncertainty of a	-0.306 0.321			0.394 0.295	
Expanded meas. uncertainty W _{CM}	14.16	%		7.77	%
		Bonn, Belderberg	l.		
Uncertainty between Reference	0.53	µg/m³		2 - C - H - C - C - C	
Uncertainty between Candidates	0.43 SN 127	µg/m³		SN 131	_
Number of data pairs	62			62	
Slope b	1.076			1.060	
Uncertainty of b Ordinate intercept a	0.020 -1.113			0.019 -0.986	
Uncertainty of a	0.542	C 1 7 7		0.513	
Expanded meas. uncertainty Wow	12.64	%		10.25	%
		Bruehl			
Uncertainty between Reference	0.77	µg/m³			
Uncertainty between Candidates	0.54 SN 127	µg/m³		SN 131	
Number of data pairs	51 SN 127	1000		53	
Slope b	0.996			0.985	
Uncertainty of b Ordinate intercept a	0.026			0.024	
Uncertainty of a	0.614			0.570	
Expanded meas. uncertainty W _{CM}	10.43	%		11.20	%
		Teddington			
Uncertainty between Reference	0.45	µg/m³			
Uncertainty between Candidates	0.50 SN 145	µg/m³		SN 149	
Number of data pairs	73			79	
Slope b	0.901			0.921	
Uncertainty of b Ordinate intercept a	0.020 2.370			0.020	
Uncertainty of a	0.379			0.371	and the second
Expanded meas. uncertainty Wow	11.75	%		9.91	%
Unerstatistic between Defenses	0.59	Cologne, parking lot (2011)		
Uncertainty between Reference Uncertainty between Candidates	0.83	µg/m³ µg/m³			
	SN 127			SN 131	
Number of data pairs Slope b	69 0.982			66 0.983	
Uncertainty of b	0.021			0.024	
Ordinate intercept a	-1.574		1. 1. 1. 1. 1. 1.	-1.966	
Uncertainty of a Expanded meas. uncertainty W _{CM}	0.728	%		0.836	%
Expended med . Groutenity Weat	13.55	Bornheim		13.44	76
Uncertainty between Reference	0.63	µg/m³			
Uncertainty between Candidates	0.33 SN 248	µg/m³		SN 249	
Number of data pairs	56			59	
Slope b	0.991			0.990	
Uncertainty of b Ordinate intercept a	0.031 -0.575			0.032	
Uncertainty of a	0.553			0.568	
Expanded meas. uncertainty Wow	7.88	%		8.57	%
		All comparisons, ≥30 µ	g/m³		
Uncertainty between Reference	0.78	µg/m³		1 - C - C - C	
Uncertainty between Candidates	1.14 SN 127/145/248	µg/m³		SN 131/149/249	
Number of data pairs	86			85	
Slope b	1.137			1.085	
Uncertainty of b Ordinate intercept a	0.031 -6.111			0.031 -4.605	
Uncertainty of a	1.330			1.32	
Expanded meas. uncertainty W _{CM}	14.07	%		13.56	%
		All comparisons, <30 µ	ıg/m³		
Uncertainty between Reference	0.74	µg/m³			
Uncertainty between Candidates	0.43 SN 127/145/248	µg/m³		SN 131/149/249	
Number of data pairs	323			334	
Slope b	0.964			0.964	
Uncertainty of b Ordinate intercept a	0.015 0.547		and the	0.015 0.428	
Uncertainty of a	0.281			0.272	
Expanded meas. uncertainty Wow	8.52	%		8.71	%
		All comparisons			
Uncertainty between Reference	0.75	µg/m³		and the second	
Uncertainty between Candidates	0.63	µg/m³			
Number of data pairs	SN 127/145/248 409			SN 131/149/249 419	
Slope b	1.010	not significant		0.986	not significant
Uncertainty of b Ordinate intercent a	0.009	not construct		0.009	not cignificant
Ordinate intercept a Uncertainty of a	-0.376	not significant		0.223	not significant
		%		9.23	%

Umwelt 🎲 Bundesamt

Certificate: 0000028733_02 / 13 April 2018

Summary of the results for equivalence testing SWAM 5a Dual Channel Hourly Mode Monitor, Measured component PM_{2.5}, raw data

Cuida	Comparison Demonstration of Equiv:	candidate with refere		January 2010	
Candidate	SWAM 5a DC HM	alence Of Amplent Air	SN	SN 111 & SN 112	
Oundate	000000000000000000000000000000000000000		Limit value	30	µg/m²
Status of measured values	Raw data		Allowed uncertainty	25	%
		All comparisons			
Incertainty between Reference	0.52	µg/m³			
Incertainty between Candidates	0.74	µg/m³			
	SN 111 & SN 112				
Number of data pairs	61				
Slope b	0.998	not significant			
Uncertainty of b	0.016				
Ordinate intercept a	0.685	not significant			
Uncertainty of a	0.393				_
Expanded meas. uncertainty W_{CM}	10.40	%			
		Cologne, parking lot (2011)		
Jncertainty between Reference	0.52	µg/m³			1.1
Uncertainty between Candidates	0.74	µg/m³			
	SN 111			SN 112	
Number of data pairs	68			61	
Slope b	1.005			0.992	
Uncertainty of b	0.018			0.018	
Ordinate intercept a	0.657			0.901	
Uncertainty of a	0.429			0.428	
Expanded meas. uncertainty W _{CM}	12.03	%		11.32	%

Summary of the results for equivalence testing SWAM 5a Dual Channel Hourly Mode Monitor, Measured component PM₁₀, raw data

		andidate with refere				
	Demonstration of Equiva	lence Of Ambient Air				
Candidate	SWAM 5a DC HM		SN	SN 111 & SN 112		
			Limit value	50	µg/n	n²
Status of measured values	Raw data		Allowed uncertainty	25	%	
		All comparisons				
Uncertainty between Reference	0.59	μg/m³				
Uncertainty between Candidates	0.73	µg/m ^a				
	SN 111 & SN 112				100 C	
Number of data pairs	63	7 T. T. Y.				
Slope b	0.972	not significant				
Uncertainty of b	0.016					
Ordinate intercept a	-0.305	not significant				
Uncertainty of a	0.548					
Expanded measured uncertainty WCM	9.33	%				
	С	ologne, parking lot (2011)			
Uncertainty between Reference	0.59	µg/m³				11
Uncertainty between Candidates	0.73	µg/m³				
	SN 111			SN 112		-
Number of data pairs	71			63		
Slope b	0.982			0.965		
Uncertainty of b	0.018			0.015		
Ordinate intercept a	-0.079			-0.314		
Uncertainty of a	0.634			0.535		
Expanded measured uncertainty W _{CM}	8.76	%	C (C) (C) (C) (C)	10.36	%	

Umwelt 🎲 Bundesamt

Certificate: 0000028733_02 / 13 April 2018

Summary of the results for equivalence testing, SWAM 5a Monitor, Measured component $PM_{2.5}$, raw data

		candidate with refere			
	"Demonstration of Equiv	alence Of Ambient Air			
Candidate	SWAM 5a		SN	SN 331 & SN 333	
			Limit value	30	µg/m³
Status of measured values	Raw data		Allowed uncertainty	25	%
		All comparisons			
		·			
Uncertainty between Reference	0.65	µg/m³			
Uncertainty between Candidates	0.56	µg/m³			
	SN 331 & SN 333		Strength Str		and the second sec
Number of data pairs	40				
Slope b	0.971	not significant			
Uncertainty of b	0.041				
Ordinate intercept a	0.235	not significant			
Uncertainty of a	0.455				
Expanded meas. uncertainty W_{CM}	9.53	%	- 1E		
		Bornheim			
Uncertainty between Reference	0.65	µg/m³			
Uncertainty between Candidates	0.56	µg/m ^s			
	SN 331			SN 333	
Number of data pairs	40			60	
Slope b	0.976			1.031	
Uncertainty of b	0.038			0.047	
Ordinate intercept a	0.157			-0.022	
Uncertainty of a	0.419			0.491	
Expanded meas. uncertainty W _{CM}	8.50	%		13.26	%

Summary of the results for equivalence testing, SWAM 5a Monitor, Measured component PM_{10} , raw data

		candidate with refere			
Guide "E	emonstration of Equiv	alence Of Ambient Air	Monitoring Methods", J	lanuary 2010	
Candidate	SWAM 5a		SN	SN 329 & SN 330	
			Limit value	50	µg/m³
Status of measured values	Raw data		Allowed uncertainty	25	%
		All comparisons			
Uncertainty between Reference	0.63	µg/m³		100 Jacob	
Uncertainty between Candidates	0.63	µg/m³			
	SN 329 & SN 330				
Number of data pairs	59				
Slope b	1.007	not significant			
Jncertainty of b	0.035				
Ordinate intercept a	-0.900	not significant			
Uncertainty of a	0.627				
Expanded measured uncertainty WCM	7.84	%			
		Bornheim			
Uncertainty between Reference	0.63	µg/m³		and the second se	
Uncertainty between Candidates	0.63	µg/m³			
	SN 329			SN 330	
Number of data pairs	59			59	
Slope b	1.012			1.006	
Uncertainty of b	0.037			0.036	
Ordinate intercept a	-1.111			-0.746	
Uncertainty of a	0.648			0.636	
Expanded measured uncertainty W _{CM}	8.09	%		7.86	%